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a b s t r a c t

Motivated by the work of Visontai and Dey–Sivasubramanian on the gamma-positivity of
some polynomials, we discover the commutative property of a pair of Eulerian operators.
As an application, we show the bi-gamma-positivity of the descent polynomials on
permutations of the multiset {1a1 , 2a2 , . . . , nan }, where 0 ⩽ ai ⩽ 2. Therefore, these
descent polynomials are all alternatingly increasing, and so they are unimodal with
modes in the middle.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we always let f (x) =
∑n

i=0 fix
i be a polynomial with nonnegative coefficients. We say that f (x)

is unimodal if f0 ⩽ f1 ⩽ · · · ⩽ fk ⩾ fk+1 ⩾ · · · ⩾ fn for some k, where the index k is called the mode of f (x). It is well known
that if f (x) has only nonpositive real zeros, then f (x) is unimodal (see [5, p. 419] for instance). If f (x) is symmetric with
the center of symmetry ⌊n/2⌋, i.e., fi = fn−i for all indices 0 ⩽ i ⩽ n, then it can be expanded as

f (x) =

⌊n/2⌋∑
k=0

γkxk(1 + x)n−2k.

The polynomial f (x) is γ -positive if γk ⩾ 0 for all 0 ⩽ k ⩽ ⌊n/2⌋. Clearly, γ -positivity implies symmetry and unimodality.
Let f (x, y) =

∑n
i=0 fix

iyn−i be a homogeneous bivariate polynomial. We say that f (x, y) is bivariately γ -positive with the
center of symmetry n

2 if f (x, y) can be written as follows:

f (x, y) = yδ

⌊n/2⌋∑
k=0

γk(xy)k(x + y)n−2k,

where δ = 0 or δ = 1. There has been considerable recent interest in the study of the γ -positivity of polynomials,
see [3,20,26] and references therein. In particular, Brändén [3, Remark 7.3.1] noted that if f (x) is symmetric and has only
real zeros, then it is γ -positive.
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Assume that deg f (x) = n. Following [2,4], there is a unique symmetric decomposition f (x) = a(x) + xb(x), where

a(x) =
f (x) − xn+1f (1/x)

1 − x
, b(x) =

xnf (1/x) − f (x)
1 − x

.

According to [18, Definition 8], the polynomial f (x) is said to be bi-γ -positive if both a(x) and b(x) are γ -positive. It
hould be noted that γ -positivity is a special case of bi-γ -positivity. Following [22, Definition 2.9], the polynomial f (x) is
lternatingly increasing if

f0 ⩽ fn ⩽ f1 ⩽ fn−1 ⩽ · · · ⩽ f⌊(n+1)/2⌋.

n recent years, Beck–Jochemko–McCullough [1], Brändén–Solus [4] and Solus [24] studied the alternatingly increasing
roperty of several h∗-polynomials as well as some refined Eulerian polynomials. It is known that the polynomial f (x)
s alternatingly increasing if and only if the pair of polynomials in its symmetric decomposition are both unimodal and
ave only nonnegative coefficients, which was first pointed out by Brändén–Solus [4]. Thus bi-γ -positivity is stronger

than alternatingly increasing property.
For m = (m1,m2, . . . ,mn) ∈ Nn, we define the multiset [n]m = {1m1 , 2m2 , . . . , nmn}, where each element i appears mi

times. The set of all permutations of [n]m is denoted asSm. Whenm1 = m2 = · · · = mn = 1,Sm reduces to the symmetric
groupSn, representing the set of all permutations of {1, 2, . . . , n}. We refer to a permutation inSm as a generalized Stirling
permutation if, for each i within the range 1 ≤ i ≤ n, the elements located between two consecutive occurrences of i are
greater than i. For more details, refer to [19,20]. In the following, we shall consider Eulerian polynomials of a multiset.
Along the same lines, it would be interesting to study some enumerative polynomials of Stirling permutations.

Set m =
∑n

i=1 mi. For π = π1π2 . . . πm ∈ Sm, we always assume that π0 = πm+1 = 0 (except where explicitly stated).
If i ∈ {0, 1, 2, . . . ,m}, then πi is called an ascent (resp. a descent) if πi < πi+1 (resp. πi > πi+1). Let asc (π ) (resp. des (π ))
be the number of ascents (resp. descents) of π . The multiset Eulerian polynomials Am(x) are defined by

Am(x) =

∑
π∈Sm

xasc (π )
=

∑
π∈Sm

xdes (π ).

A classical result of MacMahon [21, Vol 2, Chapter IV, p. 211] says that

Am(x)
(1 − x)1+m =

∑
k⩾0

(
k + m1

m1

)(
k + m2

m2

)
· · ·

(
k + mn

mn

)
xk+1. (1)

As usual, we write π = π1π2 · · · πn ∈ Sn. Denote by Aπ (m)(x) the descent polynomial on multipermutations of
{π

m1
1 , π

m2
2 , . . . , π

mn
n }. It follows from (1) that

Am(x) = Aπ (m)(x). (2)

When m = (1, 1, . . . , 1), the polynomial Am(x) is reduced to the classical Eulerian polynomial An(x). In other words,

An(x) =

∑
π∈Sn

xasc (π )
=

∑
π∈Sn

xdes (π ).

Simion [23, Section 2] found that Am(x) is real-rooted for any m. When m = (p, p, . . . , p), Carlitz–Hoggatt [6] showed
that Am(x) is symmetric, where p is a given positive integer. By [3, Remark 7.3.1], an immediate consequence is the
following result.

Proposition 1. For any m, the multiset Eulerian polynomials Am(x) are all unimodal. When m = (p, p, . . . , p), the polynomial
Am(x) is γ -positive, and so its mode is in the middle.

Recently, there has been much work on enumerative polynomials of multisets, see [13–16,26] for instance. In particular,
Lin–Xu–Zhao [15] found a combinatorial interpretation for the γ -coefficients of Am(x) via a model of weakly increasing
trees, where m = (p, p, . . . , p). Motivated by Proposition 1, it is natural to consider the following problem.

Problem 2. For any m, could we characterize the location of the mode of Am(x)?

A bivariate version of the Eulerian polynomial over the symmetric group is given as follows:

An(x, y) =

∑
π∈Sn

xasc (π )ydes (π ).

In particular, An(x, 1) = An(1, x) = An(x). Carlitz and Scoville [7] found that

An+1(x, y) = xy
(

∂

∂x
+

∂

∂y

)
An(x, y), A1(x, y) = xy.

Using the following Eulerian operator

T = xy
(

∂
+

∂
)

, (3)

∂x ∂y
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oata and Schützenberger [11] discovered that

An(x, y) =

⌊(n+1)/2⌋∑
k=1

γ (n, k)(xy)k(x + y)n+1−2k,

where γ (n, k) are all nonnegative integers. Applying the same idea, Visontai [25] investigated the joint generating
polynomial of descents and inverse descents, Dey–Sivasubramanian [9] studied the descent polynomials on permutations
in the alternating group. As an illustration, we now recall a result on the Eulerian operator T , which is a slightly variant
of [9, Lemma 5].

Lemma 3. Let f (x, y) be a bivariate γ -positive polynomial with the center of symmetry n
2 . Then T (f (x, y)) is a bivariate

-positive polynomial with the center of symmetry n+1
2 .

Motivated by the work of Visontai [25] and Dey–Sivasubramanian [9], in this paper we introduce the following Eulerian
operator

G = xy2
(

∂

∂x
+

∂

∂y

)
+

x2y2

2

(
∂2

∂x2
+

∂2

∂y2

)
+ x2y2

∂2

∂x∂y
. (4)

In the next section, we prove the commutative property of the Eulerian operators T and G. In Section 3, we shall prove
he following result, which gives a partial answer to Problem 2.

heorem 4. Let [n]m = {1m1 , 2m2 , . . . , nmn}, where 0 ⩽ mi ⩽ 2. The Eulerian polynomials Am(x) are all bi-γ -positive, and so
m(x) are all alternatingly increasing. The polynomial Am(x) becomes a γ -positive polynomial only when m consists exclusively

of the elements {0, 1} or {0, 2}.

In the following discussion, we always set m = {m1,m2, . . . ,mn}, where 0 ⩽ mi ⩽ 2. Let

Am(x, y) =

∑
π∈Sm

xdes (π )ym+1−des (π ).

here m =
∑n

i=1 mi. Clearly, Am(x, 1) = Am(x). For convenience, set A∅(x, y) = x.

Example 5. We have

A{1}(x, y) = xy, A{1,1}(x, y) = xy(x + y), A{1,1,1}(x, y) = xy(x2 + 4xy + y2),

A{2}(x, y) = xy2, A{1,2}(x, y) = A{2,1}(x, y) = xy2(2x + y), A{2,2}(x, y) = xy2(x2 + 4xy + y2),

A{1,1,2}(x, y) = A{1,2,1}(x, y) = A{2,1,1}(x, y) = xy2(4x2 + 7xy + y2),

A{1,2,2}(x, y) = A{2,1,2}(x, y) = A{2,2,1}(x, y) = xy2(2x3 + 15x2y + 12xy2 + y3).

Remark 6. In [17, Section 4], by using context-free grammars, Ma–Ma–Yeh proved that the descent polynomials of
all signed permutations of the multiset {12, 22, . . . , n2

} are bi-γ -positive. Based on the work of Brändén–Solus [4] and
Lin [12], Ding–Zhu [10, Proposition 5.6] found that the descent polynomials of all signed permutations of the multiset
{1s1 , 2s2 , . . . , nsn} are alternatingly increasing, where sj ∈ {1, 2} for all 1 ⩽ j ⩽ n.

2. The commutative property of Eulerian operators

Lemma 7. Let m = {m1,m2, . . . ,mn}, where 0 ⩽ mi ⩽ 2. Set m = m∪ {n+ 1} and m = m∪ {n+ 1, n+ 1}. Let T and G be
he Eulerian operators defined by (3) and (4), respectively. Then we have Am(x, y) = T (Am(x, y)) and Am(x, y) = G (Am(x, y)).

Proof. Let π ∈ Sm. We introduce a labeling of π as follows:

(L1) if πi is a descent, then put a superscript label x right after it;
(L2) if πi is an ascent or a plateau (i.e., πi = πi+1), then put a superscript label y right after it.

It should be noted that there always exist a superscript label y before π , and a superscript label x at the end of π , since
we always assume that π0 = πm+1 = 0. For example, for π = 12125433, the labeling of π is given by y1y2x1y2y5x4x3y3x.

When the element n+1 is inserted into π , we always get a label y just before n+1 as well as a label x right after n+1.
This corresponds to the substitution rule of labels: x → xy or y → xy. By induction, we see that the term T (Am(x, y))
gives the contribution of all π ′

∈ Sm in which the element n + 1 appears in positions j, where 0 ⩽ j ⩽ m. Hence
A (x, y) = T A (x, y) .
m ( m )
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When the two copies of n + 1 are inserted into π , we distinguish among three distinct cases:

(c1) If the two consecutive copies of n + 1 are inserted into a position of π , then the changes of labeling are illustrated
as follows:

· · · π x
i πi+1 · · · → · · · π

y
i (n + 1)y(n + 1)xπi+1 · · · ,

· · · π
y
i πi+1 · · · → · · · π

y
i (n + 1)y(n + 1)xπi+1 · · · .

This explains the term xy2
(

∂
∂x +

∂
∂y

)
;

(c2) If the two copies of n+ 1 are inserted into two different positions with the same label, then the changes of labeling
are illustrated as follows:

· · · π x
i πi+1 · · · π x

j πj+1 · · · → · · · π
y
i (n + 1)xπi+1 · · · π

y
j (n + 1)xπj+1 · · · ,

· · · π
y
i πi+1 · · · π

y
j πj+1 · · · → · · · π

y
i (n + 1)xπi+1 · · · π

y
j (n + 1)xπj+1 · · · .

This explains the term x2y2
2

(
∂2

∂x2
+

∂2

∂y2

)
;

(c3) If the two copies of n+ 1 are inserted into two different positions with different labels, then the changes of labeling
are illustrated as follows:

· · · π x
i πi+1 · · · π

y
j πj+1 · · · → · · · π

y
i (n + 1)xπi+1 · · · π

y
j (n + 1)xπj+1 · · · ,

· · · π
y
i πi+1 · · · π x

j πj+1 · · · → · · · π
y
i (n + 1)xπi+1 · · · π

y
j (n + 1)xπj+1 · · · .

This explains the term x2y2 ∂2

∂x∂y .

herefore, the action of G on the set of labeled multipermutations in Sm gives the set of labeled multipermutations in
m. This yields Am(x, y) = G (Am(x, y)). □

We can now present the following result.

Theorem 8. The Eulerian operators T and G are commutative, i.e., GT = TG.

Proof. Let G = G1 + G2 + G3, where

G1 = xy2
(

∂

∂x
+

∂

∂y

)
, G2 =

x2y2

2

(
∂2

∂x2
+

∂2

∂y2

)
, G3 = x2y2

∂2

∂x∂y
. (5)

It is easily checked that

G1T = xy2
[
(x + y)

(
∂

∂x
+

∂

∂y

)
+ xy

(
∂2

∂x2
+

∂2

∂y2
+ 2

∂2

∂x∂y

)]
,

G2T =
x2y2

2

[
2y

∂2

∂x2
+ 2x

∂2

∂y2
+ 2(x + y)

∂2

∂x∂y
+ xy

(
∂3

∂x3
+

∂3

∂y3
+

∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

G3T = x2y2
[(

∂

∂x
+

∂

∂y

)
+ (x + y)

∂2

∂x∂y
+ x

∂2

∂x2
+ y

∂2

∂y2
+ xy

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

TG1 = xy
[
(2xy + y2)

(
∂

∂x
+

∂

∂y

)
+ xy2

(
∂2

∂x2
+

∂2

∂y2
+ 2

∂2

∂x∂y

)]
,

TG2 = xy
[
(xy2 + x2y)

(
∂2

∂x2
+

∂2

∂y2

)
+

x2y2

2

(
∂3

∂x3
+

∂3

∂y3
+

∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

TG3 = xy
[
2(x2y + xy2)

∂2

∂x∂y
+ x2y2

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)]
.

hus we obtain

GT = TG = (xy3 + 2x2y2)
(

∂

∂x
+

∂

∂y

)
+ (2x2y3 + x3y2)

(
∂2

∂x2
+

∂2

∂y2

)
+

(4x2y3 + 2x3y2)
∂2

∂x∂y
+

x3y3

2

(
∂3

∂x3
+

∂3

∂y3

)
+

3x3y3

2

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)
.

(6)

This completes the proof. □
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xample 9. Note that A{2}(x, y) = xy2. Using (6), one has

GT (xy2) = A{2,1,2}(x, y) = xy2(2x3 + 15x2y + 12xy2 + y3) = A{2,2,1}(x, y) = TG(xy2).

. The proof of Theorem 4

We claim that there are three types of bivariate γ -expansions for Am(x, y).

Type I :

⌊(m+1)/2⌋∑
k=1

a(m, k)(xy)k(x + y)m+1−2k, (7)

Type II : y
⌊m/2⌋∑
k=1

b(m, k)(xy)k(x + y)m−2k, (8)

Type III :

⌊(m+1)/2⌋∑
k=1

c(m, k)(xy)k(x + y)m+1−2k
+ y

⌊m/2⌋∑
k=1

d(m, k)(xy)k(x + y)m−2k, (9)

where the first type corresponds to m = {1, 1, . . . , 1}, the second type corresponds to m = {2, 2, . . . , 2}, and the last
type corresponds to the other cases. As illustrated by Example 5, the claim holds for any m ⩽ 4.

We proceed by induction. It suffices to distinguish among three distinct cases:

(a1) Consider the case m = {1, 1, . . . , 1}. Suppose that the γ -expansion of Am(x, y) is given by Type I , i.e., it is bivariate
γ -positive with the center of symmetry m+1

2 . By (7) and Lemma 7, we have

Am(x, y) = T (Am(x, y))

= T

(
⌊(m+1)/2⌋∑

k=1

a(m, k)(xy)k(x + y)m+1−2k

)

=

⌊(m+1)/2⌋∑
k=1

a(m, k)[k(xy)k(x + y)m+2−2k
+ 2(m + 1 − 2k)(xy)k+1(x + y)m−2k

],

Setting ã(m, k) = ka(m, k) + 2(m + 3 − 2k)a(m, k − 1), we get

Am(x, y) = T (Am(x, y)) =

⌊(m+2)/2⌋∑
k=1

ã(m, k)(xy)k(x + y)m+2−2k. (10)

So the γ -expansion of Am(x, y) belongs to Type I .
Consider the action of the operator G on the basis element (xy)k(x + y)m+1−2k. We get

G
(
(xy)k(x + y)m+1−2k)

= G1
(
(xy)k(x + y)m+1−2k)

+ (G2 + G3)
(
(xy)k(x + y)m+1−2k) ,

where G1,G2 and G3 are respectively defined by (5). After some calculations, this gives the following:

G1
(
(xy)k(x + y)m+1−2k)

= y
[
k(xy)k(x + y)m+2−2k

+ 2(m + 1 − 2k)(xy)k+1(x + y)m−2k] ,
(G2 + G3)

(
(xy)k(x + y)m+1−2k)

=

(
k
2

)
(xy)k(x + y)m+3−2k

+ k(xy)k+1(x + y)m+3−2(k+1)
+

2k(m + 1 − 2k)(xy)k+1(x + y)m+3−2(k+1)
+ 2(m + 1 − 2k)(m − 2k)(xy)k+2(x + y)m+3−2(k+2).

Thus G1
(
(xy)k(x + y)m+1−2k

)
and (G2 + G3)

(
(xy)k(x + y)m+1−2k

)
are both bivariate γ -positive polynomials with the

center of symmetry m+2
2 and m+3

2 , respectively. Therefore, the γ -expansion of G (Am(x, y)) belongs to Type III . More
precisely, there exist nonnegative integers c(m, k) and d(m, k) such that

Am(x, y) = G (Am(x, y)) =

⌊(m+1)/2⌋∑
k=1

c(m, k)(xy)k(x + y)m+3−2k
+

y
⌊m/2⌋∑
k=1

d(m, k)(xy)k(x + y)m+2−2k.

(11)

(a2) Consider the case m = {2, 2, . . . , 2}. By (8) and Lemma 7, we have

T A (x, y)
( m )
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(
y

⌊m/2⌋∑
k=1

b(m, k)(xy)k(x + y)m−2k

)

=

⌊m/2⌋∑
k=1

b(m, k)(xy)k+1(x + y)m−2k
+ yT

(
⌊m/2⌋∑
k=1

b(m, k)(xy)k(x + y)m−2k

)

=

⌊(m+2)/2⌋∑
k=2

b(m, k − 1)(xy)k(x + y)m+2−2k
+

y
⌊m/2⌋∑
k=1

b(m, k)
[
k(xy)k(x + y)m+1−2k

+ 2(m − 2k)(xy)k+1(x + y)m−2k−1] ,
=

⌊(m+2)/2⌋∑
k=2

b(m, k − 1)(xy)k(x + y)m+2−2k
+ y

⌊(m+1)/2⌋∑
k=1

b̃(m, k)(xy)k(x + y)m+1−2k,

where b̃(m, k) = kb(m, k) + 2(m − 2k + 2)b(m, k − 1). Thus the γ -expansion of T (Am(x, y)) belongs to the Type III .
Consider the action of the operator G on the basis element y(xy)p(x + y)q. After some simplifications, it is routine to
verify that G

(
xpyp+1(x + y)q

)
has the following expansion:

y
[(

p + 1
2

)
(xy)p(x + y)q+2

+ (1 + p)(1 + 2q)(xy)p+1(x + y)q + 4
(
q
2

)
(xy)p+2(x + y)q−2

]
,

which yields that the γ -expansion of G (Am(x, y)) belongs to Type II . More precisely, there exist nonnegative integers
b̃(m, k) such that

G

(
y

⌊m/2⌋∑
k=1

b(m, k)(xy)k(x + y)m−2k

)
= y

⌊(m+2)/2⌋∑
k=1

b̃(m, k)(xy)k(x + y)m+2−2k. (12)

(a3) Consider m = {m1,m2, . . . ,mn}, where #{mi ∈ m : mi = 1} = r and #{mi ∈ m : mi = 2} = s. Without loss of
generality, assume that 1 ⩽ r, s < n and r + s = n. It follows from Lemma 7 and Theorem 8 that

Am(x, y) = Gs(T r (x)).

Using (10), we see that there exist nonnegative integers a(r, k) such that

Gs(T r (x)) = Gs

(
⌊(r+1)/2⌋∑

k=1

a(r, k)(xy)k(x + y)r+1−2k

)
.

Repeatedly using (11) and (12), we find that there exist nonnegative integers c(r, k) and d(r, k) such that

Am(x, y) =

∑
k⩾1

c(r + 2s, k)(xy)k(x + y)r+2s+1−2k
+ y

∑
k⩾1

d(r + 2s, k)(xy)k(x + y)r+2s−2k.

So the γ -expansion of Am(x, y) belongs to Type III . When y = 1, we arrive at

Am(x) =

∑
k⩾1

c(r + 2s, k)xk(1 + x)r+2s+1−2k
+

∑
k⩾1

d(r + 2s, k)xk(1 + x)r+2s−2k,

as desired. This completes the proof. □

Example 10. Note that A{2}(x, y) = y(xy). Then T
(
xy2
)

= xy2(2x + y) = (xy)2 + y(xy)(x + y), and so the γ -expansion of
T
(
A{2}(x, y)

)
= A{2,1}(x, y) belongs to Type III . Moreover, we have

G
(
xy2
)

= xy2(x2 + 4xy + y2) = y
(
(xy)(x + y)2 + 2(xy)2

)
.

So the γ -expansion of G
(
A{2}(x, y)

)
= A{2,2}(x, y) belongs to Type II .

From the proof of Theorem 4, we can conclude the following result.

Proposition 11. Let f (x, y) be a bivariate polynomial. If the γ -expansion of f (x, y) is given by Type I, then the Eulerian operator
T preserves the type of the γ -expansion of f (x, y), while the γ -expansion of G(f (x, y)) belongs to Type III. If the γ -expansion
of f (x, y) is given by Type II, then the γ -expansion of T (f (x, y)) belongs to Type III, while the Eulerian operator G preserves the
type of the γ -expansion of f (x, y). If the γ -expansion of f (x, y) is given by Type III, then both T and G preserve the type of the
γ -expansion of f (x, y).
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. Concluding remarks

In this paper, we discover the commutative property of a pair of Eulerian operators. In recent years, the Eulerian
olynomials have been extended to several combinatorial structures, including the types B and D Coxeter groups [8],
eakly increasing trees [13], s-inversion sequences [17], Stirling permutations [20] and quasi-Stirling permutations [26].
e plan to explore some Eulerian operators in these combinatorial structures in future.
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